6 research outputs found

    Análisis formal del diseño urbano arquitectónico del Malecón Grau y su influencia en la percepción sensorial, sector 1, Chimbote – 2022

    Get PDF
    La presente investigación se titula “Análisis formal del diseño urbano arquitectónico del malecón Grau y su influencia en la percepción sensorial, sector 1, Chimbote – 2022”, tuvo como objetivo general analizar la influencia del diseño urbano arquitectónico del Malecón Grau en la percepción sensorial del sector 1. La investigación es de tipo básico, de diseño no experimental – transversal y de enfoque cualitativo. Como método de recolección de información se utilizó la observación, la encuesta y la entrevista, aplicando la ficha de observación para obtener datos del sector de estudio, así mismo, se consideró 75 participantes, aplicando dos cuestionarios, por último, se entrevistó a especialistas relacionados al tema de como el diseño urbano arquitectónico puede influir en los usuarios, haciendo posible medir las dos variables de estudio; diseño urbano arquitectónico y percepción sensorial. De acuerdo a los resultados, demostró que el diseño del malecón Grau cuenta con elementos que son atractivos, pero hay otros elementos como que perturban los sentidos, causando molestia e incomodidad para la población. En conclusión, se determinó que el diseño urbano arquitectónico del malecón Grau influye en la percepción de los usuarios a través de experiencias emocionales y sentimentales generadas al entrar en contacto con el espacio

    DUNE Offline Computing Conceptual Design Report

    No full text
    This document describes Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE) experiment, in particular, the conceptual design of the offline computing needed to accomplish its physics goals. Our emphasis in this document is the development of the computing infrastructure needed to acquire, catalog, reconstruct, simulate and analyze the data from the DUNE experiment and its prototypes. In this effort, we concentrate on developing the tools and systems that facilitate the development and deployment of advanced algorithms. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions as HEP computing evolves and to provide computing that achieves the physics goals of the DUNE experiment.This document describes the conceptual design for the Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE). The goals of the experiment include 1) studying neutrino oscillations using a beam of neutrinos sent from Fermilab in Illinois to the Sanford Underground Research Facility (SURF) in Lead, South Dakota, 2) studying astrophysical neutrino sources and rare processes and 3) understanding the physics of neutrino interactions in matter. We describe the development of the computing infrastructure needed to achieve the physics goals of the experiment by storing, cataloging, reconstructing, simulating, and analyzing \sim 30 PB of data/year from DUNE and its prototypes. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions and advanced algorithms as HEP computing evolves. We describe the physics objectives, organization, use cases, and proposed technical solutions

    DUNE Offline Computing Conceptual Design Report

    No full text
    This document describes Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE) experiment, in particular, the conceptual design of the offline computing needed to accomplish its physics goals. Our emphasis in this document is the development of the computing infrastructure needed to acquire, catalog, reconstruct, simulate and analyze the data from the DUNE experiment and its prototypes. In this effort, we concentrate on developing the tools and systems thatfacilitate the development and deployment of advanced algorithms. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions as HEP computing evolves and to provide computing that achieves the physics goals of the DUNE experiment

    DUNE Offline Computing Conceptual Design Report

    No full text
    This document describes Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE) experiment, in particular, the conceptual design of the offline computing needed to accomplish its physics goals. Our emphasis in this document is the development of the computing infrastructure needed to acquire, catalog, reconstruct, simulate and analyze the data from the DUNE experiment and its prototypes. In this effort, we concentrate on developing the tools and systems thatfacilitate the development and deployment of advanced algorithms. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions as HEP computing evolves and to provide computing that achieves the physics goals of the DUNE experiment

    DUNE Offline Computing Conceptual Design Report

    No full text
    This document describes Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE) experiment, in particular, the conceptual design of the offline computing needed to accomplish its physics goals. Our emphasis in this document is the development of the computing infrastructure needed to acquire, catalog, reconstruct, simulate and analyze the data from the DUNE experiment and its prototypes. In this effort, we concentrate on developing the tools and systems thatfacilitate the development and deployment of advanced algorithms. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions as HEP computing evolves and to provide computing that achieves the physics goals of the DUNE experiment

    DUNE Offline Computing Conceptual Design Report

    No full text
    This document describes Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE) experiment, in particular, the conceptual design of the offline computing needed to accomplish its physics goals. Our emphasis in this document is the development of the computing infrastructure needed to acquire, catalog, reconstruct, simulate and analyze the data from the DUNE experiment and its prototypes. In this effort, we concentrate on developing the tools and systems thatfacilitate the development and deployment of advanced algorithms. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions as HEP computing evolves and to provide computing that achieves the physics goals of the DUNE experiment
    corecore